Your browser doesn't support javascript.
loading
Amorphous Precursor-Mediated Calcium Phosphate Coatings with Tunable Microstructures for Customized Bone Implants.
Wang, Li-Na; Meng, Yu-Feng; Feng, Yanhuizhi; Wang, Hai-Cheng; Mao, Li-Bo; Yu, Shu-Hong; Wang, Zuo-Lin.
Afiliación
  • Wang LN; Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China.
  • Meng YF; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anh
  • Feng Y; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anh
  • Wang HC; Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China.
  • Mao LB; Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, 200072, China.
  • Yu SH; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anh
  • Wang ZL; Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anh
Adv Healthc Mater ; 11(19): e2201248, 2022 10.
Article en En | MEDLINE | ID: mdl-35842766
ABSTRACT
Calcium phosphate (CaP) is frequently used as coating for bone implants to promote osseointegration. However, commercial CaP coatings via plasma spraying display similar microstructures, and thus fail to provide specific implants according to different surgical conditions or skeletal bone sites. Herein, inspired by the formation of natural biominerals with various morphologies mediated by amorphous precursors, CaP coatings with tunable microstructures mediated by an amorphous metastable phase are fabricated. The microstructures of the coatings are precisely controlled by both polyaspartic acid and Mg2+ . The cell biological behaviors, including alkaline phosphatase activity, mineralization, and osteogenesis-related genes expression, on the CaP coatings with different microstructures, exhibit significant differences. Furthermore, in vivo experiments demonstrate the osseointegration in different types of rats and bones indeed favors different CaP coatings. This biomimetic strategy can be used to fabricate customized bone implants that can meet the specific requirements of various surgery conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles Revestidos / Fosfatasa Alcalina Límite: Animals Idioma: En Revista: Adv Healthc Mater Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles Revestidos / Fosfatasa Alcalina Límite: Animals Idioma: En Revista: Adv Healthc Mater Año: 2022 Tipo del documento: Article País de afiliación: China