Your browser doesn't support javascript.
loading
Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis.
Pérez-Ortega, Jesús; van Boxtel, Ria; de Jonge, Eline F; Tommassen, Jan.
Afiliación
  • Pérez-Ortega J; Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • van Boxtel R; Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • de Jonge EF; Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
  • Tommassen J; Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article en En | MEDLINE | ID: mdl-35887374
ABSTRACT
The Gram-negative bacterium Bordetella pertussis is the causative agent of a respiratory infection known as whooping cough. Previously developed whole-cell pertussis vaccines were effective, but appeared to be too reactogenic mainly due to the presence of lipopolysaccharide (LPS, also known as endotoxin) in the outer membrane (OM). Here, we investigated the possibility of reducing endotoxicity by modulating the LPS levels. The promoter of the lpxC gene, which encodes the first committed enzyme in LPS biosynthesis, was replaced by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter. The IPTG was essential for growth, even when the construct was moved into a strain that should allow for the replacement of LPS in the outer leaflet of the OM with phospholipids by defective phospholipid transporter Mla and OM phospholipase A. LpxC depletion in the absence of IPTG resulted in morphological changes of the cells and in overproduction of outer-membrane vesicles (OMVs). The reduced amounts of LPS in whole-cell preparations and in isolated OMVs of LpxC-depleted cells resulted in lower activation of Toll-like receptor 4 in HEK-Blue reporter cells. We suggest that, besides lipid A engineering, also a reduction in LPS synthesis is an attractive strategy for the production of either whole-cell- or OMV-based vaccines, with reduced reactogenicity for B. pertussis and other Gram-negative bacteria.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bordetella pertussis / Tos Ferina Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bordetella pertussis / Tos Ferina Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos