Your browser doesn't support javascript.
loading
Application of Chaos Mutation Adaptive Sparrow Search Algorithm in Edge Data Compression.
Qiu, Shaoming; Li, Ao.
Afiliación
  • Qiu S; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
  • Li A; Communication and Network Laboratory, Dalian University, Dalian 116622, China.
Sensors (Basel) ; 22(14)2022 Jul 20.
Article en En | MEDLINE | ID: mdl-35891110
In view of the large amount of data collected by an edge server, when compression technology is used for data compression, data classification accuracy is reduced and data loss is large. This paper proposes a data compression algorithm based on the chaotic mutation adaptive sparrow search algorithm (CMASSA). Constructing a new fitness function, CMASSA optimizes the hyperparameters of the Convolutional Auto-Encoder Network (CAEN) on the cloud service center, aiming to obtain the optimal CAEN model. The model is sent to the edge server to compress the data at the lower level of edge computing. The effectiveness of CMASSA performance is tested on ten high-dimensional benchmark functions, and the results show that CMASSA outperforms other comparison algorithms. Subsequently, experiments are compared with other literature on the Multi-class Weather Dataset (MWD). Experiments show that under the premise of ensuring a certain compression ratio, the proposed algorithm not only has better accuracy in classification tasks than other algorithms but also maintains a high degree of data reconstruction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compresión de Datos Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compresión de Datos Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China