Your browser doesn't support javascript.
loading
3D single cell migration driven by temporal correlation between oscillating force dipoles.
Godeau, Amélie Luise; Leoni, Marco; Comelles, Jordi; Guyomar, Tristan; Lieb, Michele; Delanoë-Ayari, Hélène; Ott, Albrecht; Harlepp, Sebastien; Sens, Pierre; Riveline, Daniel.
Afiliación
  • Godeau AL; Laboratory of Cell Physics, ISIS/IGBMC, UMR 7104, Inserm, and University of Strasbourg, Strasbourg, France.
  • Leoni M; Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
  • Comelles J; Université Paris-Saclay, CNRS, Laboratoire de l'accélérateur linéaire, Orsay, France.
  • Guyomar T; Laboratory of Cell Physics, ISIS/IGBMC, UMR 7104, Inserm, and University of Strasbourg, Strasbourg, France.
  • Lieb M; Laboratory of Cell Physics, ISIS/IGBMC, UMR 7104, Inserm, and University of Strasbourg, Strasbourg, France.
  • Delanoë-Ayari H; Laboratory of Cell Physics, ISIS/IGBMC, UMR 7104, Inserm, and University of Strasbourg, Strasbourg, France.
  • Ott A; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
  • Harlepp S; Saarland University, Center for Biophysics, Biologische Experimentalphysik, Saarbrücken, Germany.
  • Sens P; Tumor Biomechanics, INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France.
  • Riveline D; Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
Elife ; 112022 07 28.
Article en En | MEDLINE | ID: mdl-35899947
ABSTRACT
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices, do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement, and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas / Polaridad Celular Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas / Polaridad Celular Idioma: En Revista: Elife Año: 2022 Tipo del documento: Article País de afiliación: Francia