Your browser doesn't support javascript.
loading
A comparison of Covid-19 early detection between convolutional neural networks and radiologists.
Albiol, Alberto; Albiol, Francisco; Paredes, Roberto; Plasencia-Martínez, Juana María; Blanco Barrio, Ana; Santos, José M García; Tortajada, Salvador; González Montaño, Victoria M; Rodríguez Godoy, Clara E; Fernández Gómez, Saray; Oliver-Garcia, Elena; de la Iglesia Vayá, María; Márquez Pérez, Francisca L; Rayo Madrid, Juan I.
Afiliación
  • Albiol A; ETSI Telecomunicación, iTeam Institute, Universitat Politècnica València, Camino de Vera S/N, 46022, València, Spain. alalbiol@iteam.upv.es.
  • Albiol F; Instituto Física Corpuscular, National Research Council (CSIC)-Universitat València, València, Spain.
  • Paredes R; Instituto de Física Corpuscular IFIC (CSIC-UVEG), Madrid, Spain.
  • Plasencia-Martínez JM; PRLHT Research Center, Universitat Politècnica de València, València, Spain.
  • Blanco Barrio A; Hospital General Universitario Morales Meseguer, Murcia, Spain.
  • Santos JMG; Hospital General Universitario Morales Meseguer, Murcia, Spain.
  • Tortajada S; Hospital General Universitario Morales Meseguer, Murcia, Spain.
  • González Montaño VM; Instituto de Física Corpuscular IFIC (CSIC-UVEG), Madrid, Spain.
  • Rodríguez Godoy CE; Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain.
  • Fernández Gómez S; Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain.
  • Oliver-Garcia E; Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain.
  • de la Iglesia Vayá M; Biomedical Imaging Mixed Unit, FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, València, Spain.
  • Márquez Pérez FL; Biomedical Imaging Mixed Unit, FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, València, Spain.
  • Rayo Madrid JI; Regional Ministry of Universal Health a Public Health in València, València, Spain.
Insights Imaging ; 13(1): 122, 2022 Jul 28.
Article en En | MEDLINE | ID: mdl-35900673
BACKGROUND: The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience. METHODS: The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx. RESULTS: Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx. CONCLUSION: The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Screening_studies Idioma: En Revista: Insights Imaging Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Screening_studies Idioma: En Revista: Insights Imaging Año: 2022 Tipo del documento: Article País de afiliación: España