Your browser doesn't support javascript.
loading
Phase Conversion Accelerating "Zn-Escape" Effect in ZnSe-CFs Heterostructure for High Performance Sodium-Ion Half/Full Batteries.
Dong, Wen-Da; Li, Chao-Fan; Wang, Chun-Yu; Wu, Liang; Hu, Zhi-Yi; Liu, Jing; Chen, Li-Hua; Li, Yu; Su, Bao-Lian.
Afiliación
  • Dong WD; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Li CF; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Wang CY; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Wu L; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Hu ZY; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Liu J; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Chen LH; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Li Y; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
  • Su BL; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China.
Small ; 18(43): e2105169, 2022 Oct.
Article en En | MEDLINE | ID: mdl-35913499
ABSTRACT
Sodium-ion batteries (SIBs) are considered as a promising large-scale energy storage system owing to the abundant and low-cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high-performance ZnSe/carbon fibers (ZnSe-CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium-ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe-CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the "Zn-escape" effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe-CFs delivering a superior rate performance of 206 mAh g-1 at 1500 mA g-1 for half battery and an initial discharge capacity of 197.4 mAh g-1 at a current density of 1 A g-1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China