Your browser doesn't support javascript.
loading
Carbon Quantum Dot Modified Reduced Graphene Oxide Framework for Improved Alkali Metal Ion Storage Performance.
Jin, Shikai; Allam, Omar; Lee, Kyungbin; Lim, Jeonghoon; Lee, Michael J; Loh, Sze Hou; Jang, Seung Soon; Lee, Seung Woo.
Afiliación
  • Jin S; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Allam O; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Lee K; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Lim J; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Lee MJ; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Loh SH; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Jang SS; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Lee SW; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Small ; 18(35): e2202898, 2022 Sep.
Article en En | MEDLINE | ID: mdl-35927029
ABSTRACT
Organic materials with redox-active oxygen functional groups are of great interest as electrode materials for alkali-ion storage due to their earth-abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one-pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li-, Na-, and K-ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali-ions and impressive reversible capacity (257 mAh g-1 at 50 mA g-1 ), rate capability (111 mAh g-1 at 1 A g-1 ), and cycling stability (79% retention after 10 000 cycles) with Li-ion. Furthermore, density functional theory calculations uncover the CQD structure-electrochemical reactivity trends for different alkali-ion. The results provide important insights into adopting CQD species for optimal alkali-ion storage.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos