Your browser doesn't support javascript.
loading
Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat.
Lundquist, Patrik; Khodus, Georgiy; Niu, Zhigao; Thwala, Lungile Nomcebo; McCartney, Fiona; Simoff, Ivailo; Andersson, Ellen; Beloqui, Ana; Mabondzo, Aloise; Robla, Sandra; Webb, Dominic-Luc; Hellström, Per M; Keita, Åsa V; Sima, Eduardo; Csaba, Noemi; Sundbom, Magnus; Preat, Veronique; Brayden, David J; Alonso, Maria Jose; Artursson, Per.
Afiliación
  • Lundquist P; Department of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden.
  • Khodus G; Department of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden.
  • Niu Z; Department of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain.
  • Thwala LN; Department of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain.
  • McCartney F; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium.
  • Simoff I; UCD School of Veterinary Medicine, University College Dublin, Belfield D04 V1W8, Ireland.
  • Andersson E; Department of Pharmacy, Uppsala University, SE-751 43 Uppsala, Sweden.
  • Beloqui A; Department of Surgery in Norrköping, Linköping University, SE-581 83 Norrköping, Sweden.
  • Mabondzo A; Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden.
  • Robla S; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium.
  • Webb DL; CEA, Institute of Biology and Technology of Saclay, Department of Pharmacology and Immunoanalysis, Gif sur Yvette FR 91191, France.
  • Hellström PM; Department of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain.
  • Keita ÅV; Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
  • Sima E; Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
  • Csaba N; Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden.
  • Sundbom M; Department of Surgical Sciences-Upper Abdominal Surgery, Uppsala University, SE-751 85 Uppsala, Sweden.
  • Preat V; Department of Pharmacy and Pharmaceutical Technology, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela ES 15782, Spain.
  • Brayden DJ; Department of Surgical Sciences-Upper Abdominal Surgery, Uppsala University, SE-751 85 Uppsala, Sweden.
  • Alonso MJ; Université catholique de Louvain, UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, BE 1200 Brussels, Belgium.
  • Artursson P; UCD School of Veterinary Medicine, University College Dublin, Belfield D04 V1W8, Ireland.
ACS Nano ; 16(9): 14210-14229, 2022 09 27.
Article en En | MEDLINE | ID: mdl-35998570
ABSTRACT
Peptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive. In this study, we investigated the absorption mechanisms of four insulin-loaded arginine-rich nanoparticles displaying differing composition and surface characteristics, developed within the pan-European consortium TRANS-INT. The transport mechanisms and major barriers to nanoparticle permeability were investigated in freshly isolated human jejunal tissue. Cytokine release profiles and standard toxicity markers indicated that the nanoparticles were nontoxic. Three out of four nanoparticles displayed pronounced binding to the mucus layer and did not reach the epithelium. One nanoparticle composed of a mucus inert shell and cell-penetrating octarginine (ENCP), showed significant uptake by the intestinal epithelium corresponding to 28 ± 9% of the administered nanoparticle dose, as determined by super-resolution microscopy. Only a small fraction of nanoparticles taken up by epithelia went on to be transcytosed via a dynamin-dependent process. In situ studies in intact rat jejunal loops confirmed the results from human tissue regarding mucus binding, epithelial uptake, and negligible insulin bioavailability. In conclusion, while none of the four arginine-rich nanoparticles supported systemic insulin delivery, ENCP displayed a consistently high uptake along the intestinal villi. It is proposed that ENCP should be further investigated for local delivery of therapeutics to the intestinal mucosa.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Productos Biológicos / Nanopartículas Límite: Animals / Humans Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Productos Biológicos / Nanopartículas Límite: Animals / Humans Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Suecia