Your browser doesn't support javascript.
loading
Neural operator learning of heterogeneous mechanobiological insults contributing to aortic aneurysms.
Goswami, Somdatta; Li, David S; Rego, Bruno V; Latorre, Marcos; Humphrey, Jay D; Karniadakis, George Em.
Afiliación
  • Goswami S; Division of Applied Mathematics, Brown University, Providence, RI, USA.
  • Li DS; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
  • Rego BV; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
  • Latorre M; Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain.
  • Humphrey JD; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
  • Karniadakis GE; Division of Applied Mathematics, Brown University, Providence, RI, USA.
J R Soc Interface ; 19(193): 20220410, 2022 08.
Article en En | MEDLINE | ID: mdl-36043289
ABSTRACT
Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta that can lead to life-threatening dissection or rupture. In vivo assessments of TAA progression are largely limited to measurements of aneurysm size and growth rate. There is promise, however, that computational modelling of the evolving biomechanics of the aorta could predict future geometry and properties from initiating mechanobiological insults. We present an integrated framework to train a deep operator network (DeepONet)-based surrogate model to identify TAA contributing factors using synthetic finite-element-based datasets. For training, we employ a constrained mixture model of aortic growth and remodelling to generate maps of local aortic dilatation and distensibility for multiple TAA risk factors. We evaluate the performance of the surrogate model for insult distributions varying from fusiform (analytically defined) to complex (randomly generated). We propose two frameworks, one trained on sparse information and one on full-field greyscale images, to gain insight into a preferred neural operator-based approach. We show that this continuous learning approach can predict the patient-specific insult profile associated with any given dilatation and distensibility map with high accuracy, particularly when based on full-field images. Our findings demonstrate the feasibility of applying DeepONet to support transfer learning of patient-specific inputs to predict TAA progression.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aneurisma de la Aorta Torácica Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J R Soc Interface Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aneurisma de la Aorta Torácica Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J R Soc Interface Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos