Your browser doesn't support javascript.
loading
Cytological, physiological and transcriptomic analysis of variegated Leaves in Primulina pungentisepala offspring.
Chen, Jiancun; Li, Yueya; He, Dong; Bai, Meng; Li, Bo; Zhang, Qixiang; Luo, Le.
Afiliación
  • Chen J; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • Li Y; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • He D; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • Bai M; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • Li B; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • Zhang Q; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
  • Luo L; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laborator
BMC Plant Biol ; 22(1): 419, 2022 Sep 01.
Article en En | MEDLINE | ID: mdl-36045322
ABSTRACT

BACKGROUND:

Primulina pungentisepala is suitable for use as a potted plant because of its beautiful leaf variegation, which is significantly different in its selfed offspring. However, the mechanism of P. pungentisepala leaf variegation is unclear. In this study, two types of offspring showing the greatest differences were compared in terms of leaf structure, chlorophyll contents, chlorophyll fluorescence parameters and transcriptomes to provide a reference for studying the molecular mechanism of structural leaf variegation.

RESULTS:

Air spaces were found between water storage tissue, and the palisade tissue cells were spherical in the white type. The content of chlorophyll a and total chlorophyll (chlorophyll a + b) was significantly lower in the white type, but there were no significant differences in the content of chlorophyll b, chlorophyll a/b or chlorophyll fluorescence parameters between the white and green types. We performed transcriptomic sequencing to identify differentially expressed genes (DEGs) involved in cell division and differentiation, chlorophyll metabolism and photosynthesis. Among these genes, the expression of the cell division- and differentiation-related leucine-rich repeat receptor-like kinases (LRR-RLKs), xyloglucan endotransglycosylase/hydrolase (XET/H), pectinesterase (PE), expansin (EXP), cellulose synthase-like (CSL), VARIEGATED 3 (VAR3), and ZAT10 genes were downregulated in the white type, which might have promoted the development air spaces and variant palisade cells. Chlorophyll biosynthesis-related hydroxymethylbilane synthase (HEMC) and the H subunit of magnesium chelatase (CHLH) were downregulated, while chlorophyll degradation-related chlorophyllase-2 (CHL2) was upregulated in the white type, which might have led to lower chlorophyll accumulation.

CONCLUSION:

Leaf variegation in P. pungentisepala was caused by a combination of mechanisms involving structural variegation and low chlorophyll levels. Our research provides significant insights into the molecular mechanisms of structural leaf variegation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Hojas de la Planta / Transcriptoma Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Hojas de la Planta / Transcriptoma Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article