Your browser doesn't support javascript.
loading
CINS: Cell Interaction Network inference from Single cell expression data.
Yuan, Ye; Cosme, Carlos; Adams, Taylor Sterling; Schupp, Jonas; Sakamoto, Koji; Xylourgidis, Nikos; Ruffalo, Matthew; Li, Jiachen; Kaminski, Naftali; Bar-Joseph, Ziv.
Afiliación
  • Yuan Y; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
  • Cosme C; Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
  • Adams TS; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
  • Schupp J; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
  • Sakamoto K; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
  • Xylourgidis N; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
  • Ruffalo M; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
  • Li J; Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
  • Kaminski N; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
  • Bar-Joseph Z; Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
PLoS Comput Biol ; 18(9): e1010468, 2022 09.
Article en En | MEDLINE | ID: mdl-36095011
Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on differences in the proportion of cell types or on differentially expressed genes. In many cases these differences are driven by changes in cell interactions which are challenging to infer without spatial information. To determine cell-cell interactions that differ between conditions we developed the Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie them. We tested CINS on a disease case control and on an aging mouse dataset. In both cases CINS correctly identifies cell type interactions and the ligands involved in these interactions improving on prior methods suggested for cell interaction predictions. We performed additional mouse aging scRNA-Seq experiments which further support the interactions identified by CINS.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: China