CINS: Cell Interaction Network inference from Single cell expression data.
PLoS Comput Biol
; 18(9): e1010468, 2022 09.
Article
en En
| MEDLINE
| ID: mdl-36095011
Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on differences in the proportion of cell types or on differentially expressed genes. In many cases these differences are driven by changes in cell interactions which are challenging to infer without spatial information. To determine cell-cell interactions that differ between conditions we developed the Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie them. We tested CINS on a disease case control and on an aging mouse dataset. In both cases CINS correctly identifies cell type interactions and the ligands involved in these interactions improving on prior methods suggested for cell interaction predictions. We performed additional mouse aging scRNA-Seq experiments which further support the interactions identified by CINS.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Perfilación de la Expresión Génica
/
Análisis de la Célula Individual
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
PLoS Comput Biol
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China