Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows.
Sci Adv
; 8(38): eabq4539, 2022 Sep 23.
Article
en En
| MEDLINE
| ID: mdl-36149955
Therapeutic drug monitoring is essential for dosing pharmaceuticals with narrow therapeutic windows. Nevertheless, standard methods are imprecise and involve invasive/resource-intensive procedures with long turnaround times. Overcoming these limitations, we present a microneedle-based electrochemical aptamer biosensing patch (µNEAB-patch) that minimally invasively probes the interstitial fluid (ISF) and renders correlated, continuous, and real-time measurements of the circulating drugs' pharmacokinetics. The µNEAB-patch is created following an introduced low-cost fabrication scheme, which transforms a shortened clinical-grade needle into a high-quality gold nanoparticle-based substrate for robust aptamer immobilization and efficient electrochemical signal retrieval. This enables the reliable in vivo detection of a wide library of ISF analytes-especially those with nonexistent natural recognition elements. Accordingly, we developed µNEABs targeting various drugs, including antibiotics with narrow therapeutic windows (tobramycin and vancomycin). Through in vivo animal studies, we demonstrated the strong correlation between the ISF/circulating drug levels and the device's potential clinical use for timely prediction of total drug exposure.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Sci Adv
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos