Your browser doesn't support javascript.
loading
Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows.
Lin, Shuyu; Cheng, Xuanbing; Zhu, Jialun; Wang, Bo; Jelinek, David; Zhao, Yichao; Wu, Tsung-Yu; Horrillo, Abraham; Tan, Jiawei; Yeung, Justin; Yan, Wenzhong; Forman, Sarah; Coller, Hilary A; Milla, Carlos; Emaminejad, Sam.
Afiliación
  • Lin S; Interconnected and Integrated Bioelectronics Lab (I2BL), University of California, Los Angeles, Los Angeles, CA, USA.
  • Cheng X; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Zhu J; Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA.
  • Wang B; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Jelinek D; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Zhao Y; Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA.
  • Wu TY; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Horrillo A; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Tan J; Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA.
  • Yeung J; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Yan W; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
  • Forman S; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
  • Coller HA; Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA.
  • Milla C; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
  • Emaminejad S; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Sci Adv ; 8(38): eabq4539, 2022 Sep 23.
Article en En | MEDLINE | ID: mdl-36149955
Therapeutic drug monitoring is essential for dosing pharmaceuticals with narrow therapeutic windows. Nevertheless, standard methods are imprecise and involve invasive/resource-intensive procedures with long turnaround times. Overcoming these limitations, we present a microneedle-based electrochemical aptamer biosensing patch (µNEAB-patch) that minimally invasively probes the interstitial fluid (ISF) and renders correlated, continuous, and real-time measurements of the circulating drugs' pharmacokinetics. The µNEAB-patch is created following an introduced low-cost fabrication scheme, which transforms a shortened clinical-grade needle into a high-quality gold nanoparticle-based substrate for robust aptamer immobilization and efficient electrochemical signal retrieval. This enables the reliable in vivo detection of a wide library of ISF analytes-especially those with nonexistent natural recognition elements. Accordingly, we developed µNEABs targeting various drugs, including antibiotics with narrow therapeutic windows (tobramycin and vancomycin). Through in vivo animal studies, we demonstrated the strong correlation between the ISF/circulating drug levels and the device's potential clinical use for timely prediction of total drug exposure.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos