Your browser doesn't support javascript.
loading
ABSTRACT
This work reports the first CMOS molecular electronics chip. It is configured as a biosensor, where the primary sensing element is a single molecule "molecular wire" consisting of a ∼100 GΩ, 25 nm long alpha-helical peptide integrated into a current monitoring circuit. The engineered peptide contains a central conjugation site for attachment of various probe molecules, such as DNA, proteins, enzymes, or antibodies, which program the biosensor to detect interactions with a specific target molecule. The current through the molecular wire under a dc applied voltage is monitored with millisecond temporal resolution. The detected signals are millisecond-scale, picoampere current pulses generated by each transient probe-target molecular interaction. Implemented in a 0.18 µm CMOS technology, 16k sensors are arrayed with a 20 µm pitch and read out at a 1 kHz frame rate. The resulting biosensor chip provides direct, real-time observation of the single-molecule interaction kinetics, unlike classical biosensors that measure ensemble averages of such events. This molecular electronics chip provides a platform for putting molecular biosensing "on-chip" to bring the power of semiconductor chips to diverse applications in biological research, diagnostics, sequencing, proteomics, drug discovery, and environmental monitoring.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Electrónica Idioma: En Revista: IEEE Trans Biomed Circuits Syst Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Electrónica Idioma: En Revista: IEEE Trans Biomed Circuits Syst Año: 2022 Tipo del documento: Article