Your browser doesn't support javascript.
loading
A dense 0.1-solar-mass star in a 51-minute-orbital-period eclipsing binary.
Burdge, Kevin B; El-Badry, Kareem; Marsh, Thomas R; Rappaport, Saul; Brown, Warren R; Caiazzo, Ilaria; Chakrabarty, Deepto; Dhillon, V S; Fuller, Jim; Gänsicke, Boris T; Graham, Matthew J; Kara, Erin; Kulkarni, S R; Littlefair, S P; Mróz, Przemek; Rodríguez-Gil, Pablo; Roestel, Jan van; Simcoe, Robert A; Bellm, Eric C; Drake, Andrew J; Dekany, Richard G; Groom, Steven L; Laher, Russ R; Masci, Frank J; Riddle, Reed; Smith, Roger M; Prince, Thomas A.
Afiliación
  • Burdge KB; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. kburdge@mit.edu.
  • El-Badry K; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA. kburdge@mit.edu.
  • Marsh TR; Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USA.
  • Rappaport S; Harvard Society of Fellows, Cambridge, MA, USA.
  • Brown WR; Max-Planck Institute for Astronomy, Heidelberg, Germany.
  • Caiazzo I; Department of Physics, University of Warwick, Coventry, UK.
  • Chakrabarty D; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Dhillon VS; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Fuller J; Center for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USA.
  • Gänsicke BT; Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
  • Graham MJ; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Kara E; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Kulkarni SR; Department of Physics & Astronomy, University of Sheffield, Sheffield, UK.
  • Littlefair SP; Instituto de Astrofísica de Canarias, La Laguna, Spain.
  • Mróz P; Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
  • Rodríguez-Gil P; Department of Physics, University of Warwick, Coventry, UK.
  • Roestel JV; Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
  • Simcoe RA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Bellm EC; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Drake AJ; Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
  • Dekany RG; Department of Physics & Astronomy, University of Sheffield, Sheffield, UK.
  • Groom SL; Astronomical Observatory, University of Warsaw, Warszawa, Poland.
  • Laher RR; Instituto de Astrofísica de Canarias, La Laguna, Spain.
  • Masci FJ; Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Spain.
  • Riddle R; Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA, USA.
  • Smith RM; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Prince TA; Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nature ; 610(7932): 467-471, 2022 10.
Article en En | MEDLINE | ID: mdl-36198793
ABSTRACT
Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes1-9. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf10-14, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs13-18. However, no known transitional CV is expected to reach an orbital period short enough to account for most of the helium CV population, leaving the role of this evolutionary pathway unclear. Here we report observations of ZTF J1813+4251, a 51-minute-orbital-period, fully eclipsing binary system consisting of a star with a temperature comparable to that of the Sun but a density 100 times greater owing to its helium-rich composition, accreting onto a white dwarf. Phase-resolved spectra, multi-band light curves and the broadband spectral energy distribution allow us to obtain precise and robust constraints on the masses, radii and temperatures of both components. Evolutionary modelling shows that ZTF J1813+4251 is destined to become a helium CV binary, reaching an orbital period under 20 minutes, rendering ZTF J1813+4251 a previously missing link between helium CV binaries and hydrogen-rich CVs.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos