Your browser doesn't support javascript.
loading
Setting the Standard: Using the ABA Burn Registry to Benchmark Risk Adjusted Mortality.
Mandell, Samuel P; Phillips, Matthew H; Higginson, Sara; Hoarle, Kimberly; Hsu, Naiwei; Phillips, Bart; Thompson, Callie; Weber, Joan M; Weichmann-Murata, Erica; Bessey, Palmer Q.
Afiliación
  • Mandell SP; UTSouthwestern Medical Center/Parkland Regional Burn Center, Dallas, Texas, USA.
  • Phillips MH; BData, Inc., Minneapolis, Minnesota, USA.
  • Higginson S; UC San Diego Health Regional Burn Center, California, USA.
  • Hoarle K; American Burn Association, Chicago, Illinois, USA.
  • Hsu N; Torrance Memorial Medical Center, California, USA.
  • Phillips B; BData, Inc., Minneapolis, Minnesota, USA.
  • Thompson C; University of Utah Health, Salt Lake City, Utah, USA.
  • Weber JM; Shriners Hospital for Children, Boston, Massachusetts, USA.
  • Weichmann-Murata E; BData, Inc., Minneapolis, Minnesota, USA.
  • Bessey PQ; New York Presbyterian Hospital/Weill Cornell Medicine, New York, USA.
J Burn Care Res ; 44(2): 240-248, 2023 03 02.
Article en En | MEDLINE | ID: mdl-36219064
Reports of single center experience and studies of larger databases have identified several predictors of burn center mortality, including age, burn size, and inhalation injury. None of these analyses has been broad enough to allow benchmarking across burn centers. The purpose of this study was to derive a reliable, risk-adjusted, statistical model of mortality based on real-life experience at many burn centers in the U.S. We used the American Burn Association 2020 Full Burn Research Dataset, from the Burn Center Quality Platform (BCQP) to identify 130,729 subjects from July 2015 through June 2020 across 103 unique burn centers. We selected 22 predictor variables, from over 50 recorded in the dataset, based on completeness (at least 75% complete required) and clinical significance. We used gradient-boosted regression, a form of machine learning, to predict mortality and compared this to traditional logistic regression. Model performance was evaluated with AUC and PR curves. The CatBoost model achieved a test AUC of 0.980 with an average precision of 0.800. The logistic regression produced an AUC of 0.951 with an average precision of 0.664. While AUC, the measure most reported in the literature, is high for both models, the CatBoost model is markedly more sensitive, leading to a substantial improvement in precision. Using BCQP data, we can predict burn mortality allowing comparison across burn centers participating in BCQP.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Quemaduras / Benchmarking Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: J Burn Care Res Asunto de la revista: TRAUMATOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Quemaduras / Benchmarking Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: J Burn Care Res Asunto de la revista: TRAUMATOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos