Your browser doesn't support javascript.
loading
Inhibiting von Hippel‒Lindau protein-mediated Dishevelled ubiquitination protects against experimental parkinsonism.
Shen, Jie; Zha, Qian; Yang, Qian-Hua; Zhou, Yue-Qian; Liang, Xiao; Chen, Ying-Jie; Qi, Gui-Xia; Zhang, Xiao-Jin; Yao, Wen-Bing; Gao, Xiang-Dong; Chen, Song.
Afiliación
  • Shen J; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Zha Q; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Yang QH; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Zhou YQ; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Liang X; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Chen YJ; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Qi GX; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
  • Zhang XJ; Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
  • Yao WB; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China. wbyao@cpu.edu.cn.
  • Gao XD; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China. xdgao@cpu.edu.cn.
  • Chen S; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China. ChenS@cpu.edu.cn.
Acta Pharmacol Sin ; 44(5): 940-953, 2023 May.
Article en En | MEDLINE | ID: mdl-36357669
ABSTRACT
Dopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/ß-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of ß-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau / Proteínas Dishevelled Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Acta Pharmacol Sin Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau / Proteínas Dishevelled Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Acta Pharmacol Sin Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China