Your browser doesn't support javascript.
loading
Global models and predictions of plant diversity based on advanced machine learning techniques.
Cai, Lirong; Kreft, Holger; Taylor, Amanda; Denelle, Pierre; Schrader, Julian; Essl, Franz; van Kleunen, Mark; Pergl, Jan; Pysek, Petr; Stein, Anke; Winter, Marten; Barcelona, Julie F; Fuentes, Nicol; Karger, Dirk Nikolaus; Kartesz, John; Kuprijanov, Andreij; Nishino, Misako; Nickrent, Daniel; Nowak, Arkadiusz; Patzelt, Annette; Pelser, Pieter B; Singh, Paramjit; Wieringa, Jan J; Weigelt, Patrick.
Afiliación
  • Cai L; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany.
  • Kreft H; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany.
  • Taylor A; Centre of Biodiversity and Sustainable Land Use, University of Göttingen, 37077, Göttingen, Germany.
  • Denelle P; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany.
  • Schrader J; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany.
  • Essl F; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077, Göttingen, Germany.
  • van Kleunen M; School of Natural Sciences, Macquarie University, 2109, Sydney, NSW, Australia.
  • Pergl J; Bioinvasions, Global Change, Macroecology-Group, University of Vienna, 1030, Vienna, Austria.
  • Pysek P; Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
  • Stein A; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000, Taizhou, China.
  • Winter M; Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, 25243, Pruhonice, Czech Republic.
  • Barcelona JF; Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, 25243, Pruhonice, Czech Republic.
  • Fuentes N; Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic.
  • Inderjit; Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
  • Karger DN; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
  • Kartesz J; School of Biological Sciences, University of Canterbury, 8140, Christchurch, New Zealand.
  • Kuprijanov A; Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile.
  • Nishino M; Department of Environmental Studies and Centre for Environmental Management of Degraded Ecosystems (CEMDE), University of Delhi, 110007, Delhi, India.
  • Nickrent D; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland.
  • Nowak A; Biota of North America Program (BONAP), Chapel Hill, NC, 27516, USA.
  • Patzelt A; 650065, Kemerovo, Russia.
  • Pelser PB; Biota of North America Program (BONAP), Chapel Hill, NC, 27516, USA.
  • Singh P; Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY, 14853, USA.
  • Wieringa JJ; Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, 10-728, Olsztyn, Poland.
  • Weigelt P; PAS Botanical Garden, 02-973, Warszawa, Poland.
New Phytol ; 237(4): 1432-1445, 2023 02.
Article en En | MEDLINE | ID: mdl-36375492
Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Biodiversidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Biodiversidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania