Your browser doesn't support javascript.
loading
Wafer-Scale Growth of Sb2Te3 Films via Low-Temperature Atomic Layer Deposition for Self-Powered Photodetectors.
Yang, Jun; Li, Jianzhu; Bahrami, Amin; Nasiri, Noushin; Lehmann, Sebastian; Cichocka, Magdalena Ola; Mukherjee, Samik; Nielsch, Kornelius.
Afiliación
  • Yang J; Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069Dresden, Germany.
  • Li J; Institute of Materials Science, Technische Universität Dresden, 01062Dresden, Germany.
  • Bahrami A; School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), West Road 2, Weihai, Shandong264209, China.
  • Nasiri N; Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069Dresden, Germany.
  • Lehmann S; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales2109, Australia.
  • Cichocka MO; Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069Dresden, Germany.
  • Mukherjee S; Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069Dresden, Germany.
  • Nielsch K; Institute for Metallic Materials, Leibniz Institute of Solid State and Materials Science, 01069Dresden, Germany.
ACS Appl Mater Interfaces ; 14(48): 54034-54043, 2022 Dec 07.
Article en En | MEDLINE | ID: mdl-36383043
In this work, we demonstrate the performance of a silicon-compatible, high-performance, and self-powered photodetector. A wide detection range from visible (405 nm) to near-infrared (1550 nm) light was enabled by the vertical p-n heterojunction between the p-type antimony telluride (Sb2Te3) thin film and the n-type silicon (Si) substrates. A Sb2Te3 film with a good crystal quality, low density of extended defects, proper stoichiometry, p-type nature, and excellent uniformity across a 4 in. wafer was achieved by atomic layer deposition at 80 °C using (Et3Si)2Te and SbCl3 as precursors. The processed photodetectors have a low dark current (∼20 pA), a high responsivity of (∼4.3 A/W at 405 nm and ∼150 mA/W at 1550 nm), a peak detectivity of ∼1.65 × 1014 Jones, and a quick rise time of ∼98 µs under zero bias voltage. Density functional theory calculations reveal a narrow, near-direct, type-II band gap at the heterointerface that supports a strong built-in electric field leading to efficient separation of the photogenerated carriers. The devices have long-term air stability and efficient switching behavior even at elevated temperatures. These high-performance and self-powered p-Sb2Te3/n-Si heterojunction photodetectors have immense potential to become reliable technological building blocks for a plethora of innovative applications in next-generation optoelectronics, silicon-photonics, chip-level sensing, and detection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: Alemania