Your browser doesn't support javascript.
loading
Facile Formation of Stable Neutral Radicals and Cations from [22]Smaragdyrin BF2 Complexes.
Deng, Weikang; Liu, Yang; Shimizu, Daiki; Tanaka, Takayuki; Nakai, Akito; Rao, Yutao; Xu, Ling; Zhou, Mingbo; Osuka, Atsuhiro; Song, Jianxin.
Afiliación
  • Deng W; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Liu Y; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Shimizu D; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
  • Tanaka T; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
  • Nakai A; Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
  • Rao Y; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Xu L; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Zhou M; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Osuka A; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
  • Song J; Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081,
Chemistry ; 29(11): e202203484, 2023 Feb 21.
Article en En | MEDLINE | ID: mdl-36422469
ABSTRACT
meso-Trimesityl-substituted [20]smaragdyrin freebase was synthesized by p-toluenesulfonic acid catalyzed reaction of 5-mesityldipyrromethane and 2,14-dibromodipyrrin in an improved yield of 63 %. Unexpectedly, treatment of the [20]smaragdyrin freebase with BF3 ⋅ OEt2 and triethylamine (TEA) gave a stable radical species, in which the BF2 unit is coordinated at the tripyrrin site, probably by ready release of a hydrogen atom of a [22]smaragdyrin BF2 complex. Similar treatment of [22]smaragdyrin free base produced another [22]smaragdyrin BF2 complex, in which the BF2 unit is coordinated at the dipyrrin site. The tripyrrin site coordinated neutral radical was oxidized with AgSbF6 to give a stable antiaromatic cation; this was reduced with NaBH4 to its 22π congener, which was easily oxidized back to the neutral radical in the air and rearranged to thermodynamically stable dipyrrin site coordinated [22]smaragdyrin BF2 complex upon treatment with BF3 ⋅ OEt2 and TEA. Further, the dipyrrin site coordinated [22]smaragdyrin BF2 complex was similarly oxidized to a stable neutral radical and a stable cation in a stepwise manner. This work demonstrates a rare ability of smaragdyrin BF2 complexes to exist in multiple redox states, particularly forming a stable neutral radical by facile release of a hydrogen atom.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article