Your browser doesn't support javascript.
loading
Cell-Specific Transport and Thyroid Hormone Receptor Isoform Selectivity Account for Hepatocyte-Targeted Thyromimetic Action of MGL-3196.
Hönes, Georg Sebastian; Sivakumar, Ramona Gowry; Hoppe, Christoph; König, Jörg; Führer, Dagmar; Moeller, Lars Christian.
Afiliación
  • Hönes GS; Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
  • Sivakumar RG; Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
  • Hoppe C; Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
  • König J; Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany.
  • Führer D; Department of Endocrinology, Diabetes and Metabolism, Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
  • Moeller LC; Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article en En | MEDLINE | ID: mdl-36430194
ABSTRACT
Thyroid hormones (THs) and TH receptor-beta (TRß) reduce hepatic triglycerides, indicating a therapeutic potential for TH analogs in liver steatosis. To avoid adverse extrahepatic, especially TRα-mediated effects such as tachycardia and bone loss, TH analogs with combined TRß and hepatocyte specificity are desired. MGL-3196 is a new TH analog that supposedly meets these criteria. Here, we characterize the thyromimetic potential of MGL-3196 in cell-based assays and address its cellular uptake requirements. We studied the contribution of liver-specific organic anion transporters (OATP)1B1 and 1B3 to MGL-3196 action. The TR isoform-specific efficacy of MGL-3196 compared with 3,5,3'-triiodothyronine (T3) was determined with luciferase assays and gene expression analysis in OATP1B1 and OATP1B3 and TRα- or TRß-expressing cells and in primary murine hepatocytes (PMHs) from wild-type and TRß knockout mice. We measured the oxygen consumption rate to compare the effects of MGL-3196 and T3 on mitochondrial respiration. We identified OATP1B1 as the primary transporter for MGL-3196. MGL-3196 had a high efficacy (90% that of T3) in activating TRß, while the activation of TRα was only 25%. The treatment of PMHs with T3 and MGL-3196 at EC50 resulted in a similar induction of Dio1 and repression of Serpina7. In HEK293 cells stably expressing OATP1B1, MGL-3196 had comparable effects on mitochondrial respiration as T3. These data indicate that MGL-3196's hepatic thyromimetic action, the basis for its therapeutic use, results from a combination of hepatocyte-specific transport by OATP1B1 and the selective activation of TRß over TRα.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Hormona Tiroidea / Hepatocitos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Hormona Tiroidea / Hepatocitos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: Alemania