Your browser doesn't support javascript.
loading
Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum.
Cordeiro, Rosa L; Santos, Camila R; Domingues, Mariane N; Lima, Tatiani B; Pirolla, Renan A S; Morais, Mariana A B; Colombari, Felippe M; Miyamoto, Renan Y; Persinoti, Gabriela F; Borges, Antonio C; de Farias, Marcelo A; Stoffel, Fabiane; Li, Chao; Gozzo, Fabio C; van Heel, Marin; Guerin, Marcelo E; Sundberg, Eric J; Wang, Lai-Xi; Portugal, Rodrigo V; Giuseppe, Priscila O; Murakami, Mario T.
Afiliación
  • Cordeiro RL; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Santos CR; Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
  • Domingues MN; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Lima TB; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Pirolla RAS; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Morais MAB; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Colombari FM; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Miyamoto RY; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Persinoti GF; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Borges AC; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • de Farias MA; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Stoffel F; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Li C; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Gozzo FC; Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil.
  • van Heel M; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
  • Guerin ME; Institute of Chemistry, University of Campinas, Campinas, Brazil.
  • Sundberg EJ; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
  • Wang LX; Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
  • Portugal RV; Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
  • Giuseppe PO; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
  • Murakami MT; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
Nat Chem Biol ; 19(2): 218-229, 2023 02.
Article en En | MEDLINE | ID: mdl-36443572
ABSTRACT
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-ß-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bifidobacterium longum / Manosa Límite: Animals / Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bifidobacterium longum / Manosa Límite: Animals / Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Brasil