Discovery and Optimization of Potent, Selective, and Brain-Penetrant 1-Heteroaryl-1H-Indazole LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease.
J Med Chem
; 65(24): 16801-16817, 2022 12 22.
Article
en En
| MEDLINE
| ID: mdl-36475697
Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Med Chem
Asunto de la revista:
QUIMICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos