Your browser doesn't support javascript.
loading
Fabricating Robust Pt Clusters on Sn-Doped CeO2 for CO Oxidation: A Deep Insight into Support Engineering and Surface Structural Evolution.
Liu, Qinglong; Yang, Peng; Tan, Wei; Yu, Haowei; Ji, Jiawei; Wu, Cong; Cai, Yandi; Xie, Shaohua; Liu, Fudong; Hong, Song; Ma, Kaili; Gao, Fei; Dong, Lin.
Afiliación
  • Liu Q; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Yang P; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Tan W; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Yu H; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Ji J; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Wu C; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Cai Y; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Xie S; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States.
  • Liu F; Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States.
  • Hong S; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100027, China.
  • Ma K; Analysis and Testing Center, Southeast University, Nanjing, 211189, China.
  • Gao F; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
  • Dong L; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
Chemistry ; 29(16): e202203432, 2023 Mar 16.
Article en En | MEDLINE | ID: mdl-36567623
The size effect on nanoparticles, which affects the catalysis performance in a significant way, is crucial. The tuning of oxygen vacancies on metal-oxide support can help reduce the size of the particles in active clusters of Pt, thus improving catalysis performance of the supported catalyst. Herein, Ce-Sn solid solutions (CSO) with abundant oxygen vacancies have been synthesized. Activated by simple CO reduction after loading Pt species, the catalytic CO oxidation performance of Pt/CSO was significantly better than that of Pt/CeO2 . The reasons for the elevated activity were further explored regarding ionic Pt single sites being transformed into active Pt clusters after CO reduction. Due to more exposed oxygen vacancies, much smaller Pt clusters were created on CSO (ca. 1.2 nm) than on CeO2 (ca. 1.8 nm). Consequently, more exposed active Pt clusters significantly improved the ability to activate oxygen and directly translated to the higher catalytic oxidation performance of activated Pt/CSO catalysts in vehicle emission control applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: China