Your browser doesn't support javascript.
loading
Breakdown of the Nernst-Einstein relation in carbon nanotube porins.
Li, Zhongwu; Misra, Rahul Prasanna; Li, Yuhao; Yao, Yun-Chiao; Zhao, Sidi; Zhang, Yuliang; Chen, Yunfei; Blankschtein, Daniel; Noy, Aleksandr.
Afiliación
  • Li Z; Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Misra RP; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China.
  • Li Y; School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China.
  • Yao YC; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Zhao S; Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Zhang Y; Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Chen Y; School of Natural Sciences, University of California Merced, Merced, CA, USA.
  • Blankschtein D; Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
  • Noy A; School of Engineering, University of California Merced, Merced, CA, USA.
Nat Nanotechnol ; 18(2): 177-183, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36585518
ABSTRACT
For over 100 years, the Nernst-Einstein relation has linked a charged particle's electrophoretic mobility and diffusion coefficient. Here we report experimental measurements of diffusion and electromigration of K+ ions in narrow 0.8-nm-diameter single-walled carbon nanotube porins (CNTPs) and demonstrate that the Nernst-Einstein relation in these channels breaks down by more than three orders of magnitude. Molecular dynamics simulations using polarizable force fields show that K+ ion diffusion in CNTPs in the presence of a single-file water chain is three orders of magnitude slower than bulk diffusion. Intriguingly, the simulations also reveal a disintegration of the water chain upon application of electric fields, resulting in the formation of distinct K+-water clusters, which then traverse the CNTP at high velocity. Finally, we show that although individual ion-water clusters still obey the Nernst-Einstein relation, the overall relation breaks down because of two distinct mechanisms for ion diffusion and electromigration.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Nanotechnol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nat Nanotechnol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos