Your browser doesn't support javascript.
loading
Lessons learned from independent external validation of an AI tool to detect breast cancer using a representative UK data set.
Cushnan, Dominic; Young, Kenneth C; Ward, Dominic; Halling-Brown, Mark D; Duffy, Stephen; Given-Wilson, Rosalind; Wallis, Matthew G; Wilkinson, Louise; Lyburn, Iain; Sidebottom, Richard; McAvinchey, Rita; Lewis, Emma B; Mackenzie, Alistair; Warren, Lucy M.
Afiliación
  • Cushnan D; AI Lab, NHSX, Skipton House, London, United Kingdom.
  • Young KC; Royal Surrey NHS Foundation Trust, Guildford, United Kingdom.
  • Ward D; University of Surrey, Guildford, United Kingdom.
  • Halling-Brown MD; Royal Surrey NHS Foundation Trust, Guildford, United Kingdom.
  • Duffy S; Royal Surrey NHS Foundation Trust, Guildford, United Kingdom.
  • Given-Wilson R; University of Surrey, Guildford, United Kingdom.
  • Wallis MG; Queen Mary University London, London, United Kingdom.
  • Wilkinson L; St George's Healthcare NHS Trust, Tooting, London, United Kingdom.
  • Lyburn I; Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom.
  • Sidebottom R; Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
  • McAvinchey R; Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom.
  • Lewis EB; Cobalt Medical Charity, Cheltenham, United Kingdom.
  • Mackenzie A; Cranfield University, Shrivenham Campus, Cranfield, United Kingdom.
  • Warren LM; Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom.
Br J Radiol ; 96(1143): 20211104, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36607283
OBJECTIVE: To pilot a process for the independent external validation of an artificial intelligence (AI) tool to detect breast cancer using data from the NHS breast screening programme (NHSBSP). METHODS: A representative data set of mammography images from 26,000 women attending 2 NHS screening centres, and an enriched data set of 2054 positive cases were used from the OPTIMAM image database. The use case of the AI tool was the replacement of the first or second human reader. The performance of the AI tool was compared to that of human readers in the NHSBSP. RESULTS: Recommendations for future external validations of AI tools to detect breast cancer are provided. The tool recalled different breast cancers to the human readers. This study showed the importance of testing AI tools on all types of cases (including non-standard) and the clarity of any warning messages. The acceptable difference in sensitivity and specificity between the AI tool and human readers should be determined. Any information vital for the clinical application should be a required output for the AI tool. It is recommended that the interaction of radiologists with the AI tool, and the effect of the AI tool on arbitration be investigated prior to clinical use. CONCLUSION: This pilot demonstrated several lessons for future independent external validation of AI tools for breast cancer detection. ADVANCES IN KNOWLEDGE: Knowledge has been gained towards best practice procedures for performing independent external validations of AI tools for the detection of breast cancer using data from the NHS Breast Screening Programme.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama Tipo de estudio: Guideline Límite: Female / Humans País/Región como asunto: Europa Idioma: En Revista: Br J Radiol Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias de la Mama Tipo de estudio: Guideline Límite: Female / Humans País/Región como asunto: Europa Idioma: En Revista: Br J Radiol Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido