Your browser doesn't support javascript.
loading
A BiVO4 Photoanode with a VOx Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting.
Liu, Boyan; Wang, Xin; Zhang, Yingjuan; Xu, Liangcheng; Wang, Tingsheng; Xiao, Xiong; Wang, Songcan; Wang, Lianzhou; Huang, Wei.
Afiliación
  • Liu B; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Wang X; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Zhang Y; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Xu L; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Wang T; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Xiao X; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Wang S; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
  • Wang L; Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
  • Huang W; Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
Angew Chem Int Ed Engl ; 62(10): e202217346, 2023 Mar 01.
Article en En | MEDLINE | ID: mdl-36642699
ABSTRACT
Sluggish oxygen evolution kinetics are one of the key limitations of bismuth vanadate (BiVO4 ) photoanodes for efficient photoelectrochemical (PEC) water splitting. To address this issue, we report a vanadium oxide (VOx ) with enriched oxygen vacancies conformally grown on BiVO4 photoanodes by a simple photo-assisted electrodeposition process. The optimized BiVO4 /VOx photoanode exhibits a photocurrent density of 6.29 mA cm-2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which is ca. 385 % as high as that of its pristine counterpart. A high charge-transfer efficiency of 96 % is achieved and stable PEC water splitting is realized, with a photocurrent retention rate of 88.3 % upon 40 h of testing. The excellent PEC performance is attributed to the presence of oxygen vacancies in VOx that forms undercoordinated sites, which strengthen the adsorption of water molecules onto the active sites and promote charge transfer during the oxygen evolution reaction. This work demonstrates the potential of vanadium-based catalysts for PEC water oxidation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2023 Tipo del documento: Article País de afiliación: China