An Amphiphilic Molecule-Regulated Core-Shell-Solvation Electrolyte for Li-Metal Batteries at Ultra-Low Temperature.
Angew Chem Int Ed Engl
; 62(13): e202218151, 2023 Mar 20.
Article
en En
| MEDLINE
| ID: mdl-36727590
Lithium metal batteries hold great promise for promoting energy density and operating at low temperatures, yet they still suffer from insufficient Li compatibility and slow kinetic, especially at ultra-low temperatures. Herein, we rationally design and synthesize a new amphiphilic solvent, 1,1,2,2-tetrafluoro-3-methoxypropane, for use in battery electrolytes. The lithiophilic segment is readily to solvate Li+ to induce self-assembly of the electrolyte solution to form a peculiar core-shell-solvation structure. Such unique solvation structure not only largely improves the ionic conductivity to allow fast Li+ transport and lower the desolvation energy to enable facile desolvation, but also leads to the formation of a highly robust and conductive inorganic SEI. The resulting electrolyte demonstrates high Li efficiency and superior cycling stability from room temperature to -40 °C at high current densities. Meanwhile, anode-free high-voltage cell retains 87 % capacity after 100 cycles.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2023
Tipo del documento:
Article
País de afiliación:
China