Your browser doesn't support javascript.
loading
Effect of number of lysine motifs on the bactericidal and hemolytic activity of short cationic antimicrobial peptides.
Wu, Yuling; He, Qingling; Che, Xun; Liu, Fei; Lu, Jiaju; Kong, Xiangdong.
Afiliación
  • Wu Y; Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
  • He Q; Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
  • Che X; Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
  • Liu F; Department of Orthopaedics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No 208 Huancheng East Rd, Zhejiang Province, Hangzhou, 310003, China.
  • Lu J; Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China. Electronic
  • Kong X; Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China. Electronic
Biochem Biophys Res Commun ; 648: 66-71, 2023 03 12.
Article en En | MEDLINE | ID: mdl-36736093
ABSTRACT
Antimicrobial peptides (AMPs) are vital components of the nonspecific immune system that represent a promising broad-spectrum alternative to conventional antibiotics. Several short cationic antimicrobial peptides show highly effective antibacterial activity and low hemolytic activity, which are based on the action of a few critical amino acids, such as phenylalanine (F) and lysine (K). Previous studies have reported that Fmoc-based phenylalanine peptides possess appreciable antibacterial potency against Gram-positive bacteria, but their ability to kill Gram-negative bacteria was suboptimal. In this study, we designed and prepared a series of Fmoc-KnF peptide (n = 1-3) series by adding lysine motifs to strengthen their broad-spectrum antibacterial activity. The effect was investigated that the amount of lysine in Fmoc-F peptides on their antibacterial properties and hemolytic activities. Our results showed that the Fmoc-KKF peptide holds the strongest antimicrobial activity against both Gram-positive and negative bacteria among all designed peptides, as well as low hemolytic activity. These results provide support for the general strategy of enhancing the broad-spectrum antibacterial activity of AMPs through increased lysine content.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos Catiónicos Antimicrobianos / Lisina Idioma: En Revista: Biochem Biophys Res Commun Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos Catiónicos Antimicrobianos / Lisina Idioma: En Revista: Biochem Biophys Res Commun Año: 2023 Tipo del documento: Article País de afiliación: China