Your browser doesn't support javascript.
loading
Compressive Sensing Imaging Spectrometer for UV-Vis Stellar Spectroscopy: Instrumental Concept and Performance Analysis.
Nardino, Vanni; Guzzi, Donatella; Lastri, Cinzia; Palombi, Lorenzo; Coluccia, Giulio; Magli, Enrico; Labate, Demetrio; Raimondi, Valentina.
Afiliación
  • Nardino V; IFAC-CNR, 50019 Sesto Fiorentino, Italy.
  • Guzzi D; IFAC-CNR, 50019 Sesto Fiorentino, Italy.
  • Lastri C; IFAC-CNR, 50019 Sesto Fiorentino, Italy.
  • Palombi L; IFAC-CNR, 50019 Sesto Fiorentino, Italy.
  • Coluccia G; Politecnico di Torino-DET, 10129 Torino, Italy.
  • Magli E; Politecnico di Torino-DET, 10129 Torino, Italy.
  • Labate D; Leonardo-Company S.p.A., 50013 Campi Bisenzio, Italy.
  • Raimondi V; IFAC-CNR, 50019 Sesto Fiorentino, Italy.
Sensors (Basel) ; 23(4)2023 Feb 17.
Article en En | MEDLINE | ID: mdl-36850867
ABSTRACT
Compressive sensing (CS) has been proposed as a disruptive approach to developing a novel class of optical instrumentation used in diverse application domains. Thanks to sparsity as an inherent feature of many natural signals, CS allows for the acquisition of the signal in a very compact way, merging acquisition and compression in a single step and, furthermore, offering the capability of using a limited number of detector elements to obtain a reconstructed image with a larger number of pixels. Although the CS paradigm has already been applied in several application domains, from medical diagnostics to microscopy, studies related to space applications are very limited. In this paper, we present and discuss the instrumental concept, optical design, and performances of a CS imaging spectrometer for ultraviolet-visible (UV-Vis) stellar spectroscopy. The instrument-which is pixel-limited in the entire 300 nm-650 nm spectral range-features spectral sampling that ranges from 2.2 nm@300 nm to 22 nm@650 nm, with a total of 50 samples for each spectrum. For data reconstruction quality, the results showed good performance, measured by several quality metrics chosen from those recommended by CCSDS. The designed instrument can achieve compression ratios of 20 or higher without a significant loss of information. A pros and cons analysis of the CS approach is finally carried out, highlighting main differences with respect to a traditional system.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia