Your browser doesn't support javascript.
loading
Hypoxia preconditioned DPSC-derived exosomes regulate angiogenesis via transferring LOXL2.
Li, Baoyu; Liang, Ailin; Zhou, Yanling; Huang, Yihua; Liao, Chenxi; Zhang, Xufang; Gong, Qimei.
Afiliación
  • Li B; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  • Liang A; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  • Zhou Y; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  • Huang Y; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  • Liao C; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
  • Zhang X; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address: zhangxf37@mail.sysu.edu.cn.
  • Gong Q; Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China. Electronic address: gongqim@mail.sysu.edu.cn.
Exp Cell Res ; 425(2): 113543, 2023 04 15.
Article en En | MEDLINE | ID: mdl-36894050
ABSTRACT
Hypoxia was proved to enhance the angiogenesis of stem cells. However, the mechanism of the angiogenic potential in hypoxia-pretreated dental pulp stem cells (DPSCs) is poorly understood. We previously confirmed that hypoxia enhances the angiogenic potential of DPSC-derived exosomes with upregulation of lysyl oxidase-like 2 (LOXL2). Therefore, our study aimed to illuminate whether these exosomes promote angiogenesis via transfer of LOXL2. Exosomes were generated from hypoxia-pretreated DPSCs (Hypo-Exos) stably silencing LOXL2 after lentiviral transfection and characterized with transmission electron microscopy, nanosight and Western blot. The efficiency of silencing was verified using quantitative real-time PCR (qRT-PCR) and Western blot. CCK-8, scratch and transwell assays were conducted to explore the effects of LOXL2 silencing on DPSCs proliferation and migration. Human umbilical vein endothelial cells (HUVECs) were co-incubated with exosomes to assess the migration and angiogenic capacity through transwell and matrigel tube formation assays. The relative expression of angiogenesis-associated genes was characterized by qRT-PCR and Western blot. LOXL2 was successfully silenced in DPSCs and inhibited DPSC proliferation and migration. LOXL2 silencing in Hypo-Exos partially reduced promotion of HUVEC migration and tube formation and inhibited the expression of angiogenesis-associated genes. Thus, LOXL2 is one of various factors mediating the angiogenic effects of Hypo-Exos.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Exosomas Límite: Humans Idioma: En Revista: Exp Cell Res Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Exosomas Límite: Humans Idioma: En Revista: Exp Cell Res Año: 2023 Tipo del documento: Article País de afiliación: China