Your browser doesn't support javascript.
loading
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity.
Younas, Muhammad Usama; Wang, Guanda; Du, Haibo; Zhang, Yi; Ahmad, Irshad; Rajput, Nimra; Li, Mingyou; Feng, Zhiming; Hu, Keming; Khan, Nasr Ullah; Xie, Wenya; Qasim, Muhammad; Chen, Zongxiang; Zuo, Shimin.
Afiliación
  • Younas MU; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Wang G; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Du H; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Zhang Y; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Ahmad I; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Rajput N; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Li M; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Feng Z; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Hu K; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
  • Khan NU; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Xie W; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Qasim M; Department of Plant Breeding & Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29111, Pakistan.
  • Chen Z; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
  • Zuo S; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article en En | MEDLINE | ID: mdl-36902415
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Magnaporthe Tipo de estudio: Qualitative_research Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oryza / Magnaporthe Tipo de estudio: Qualitative_research Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: China