Improvement of Heat Resistance of Fluorosilicone Rubber Employing Vinyl-Functionalized POSS as a Chemical Crosslinking Agent.
Polymers (Basel)
; 15(5)2023 Mar 04.
Article
en En
| MEDLINE
| ID: mdl-36904542
Fluorosilicone rubber (F-LSR) is a promising material that can be applied in various cutting-edge industries. However, the slightly lower thermal resistance of F-LSR compared with that of conventional PDMS is difficult to overcome by applying nonreactive conventional fillers that readily agglomerate owing to their incompatible structure. Polyhedral oligomeric silsesquioxane with vinyl groups (POSS-V) is a suitable material that may satisfy this requirement. Herein, F-LSR-POSS was prepared using POSS-V as a chemical crosslinking agent chemically bonded with F-LSR through hydrosilylation. All F-LSR-POSSs were successfully prepared and most of the POSS-Vs were uniformly dispersed in the F-LSR-POSSs, as confirmed by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. The mechanical strength and crosslinking density of the F-LSR-POSSs were determined using a universal testing machine (UTM) and dynamic mechanical analysis (DMA), respectively. Finally, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements confirmed that the low-temperature thermal properties were maintained, and the heat resistance was significantly improved compared with conventional F-LSR. Eventually, the poor heat resistance of the F-LSR was overcome with three-dimensional high-density crosslinking by introducing POSS-V as a chemical crosslinking agent, thereby expanding the potential fluorosilicone applications.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Polymers (Basel)
Año:
2023
Tipo del documento:
Article