Your browser doesn't support javascript.
loading
Species-specific CD4+ T cells enable prediction of mucosal immune phenotypes from microbiota composition.
Spindler, Matthew P; Mogno, Ilaria; Suri, Prerna; Britton, Graham J; Faith, Jeremiah J.
Afiliación
  • Spindler MP; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Mogno I; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Suri P; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Britton GJ; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
  • Faith JJ; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
Proc Natl Acad Sci U S A ; 120(12): e2215914120, 2023 03 21.
Article en En | MEDLINE | ID: mdl-36917674
How bacterial strains within a complex human microbiota collectively shape intestinal T cell homeostasis is not well understood. Methods that quickly identify effector strains or species that drive specific mucosal T cell phenotypes are needed to define general principles for how the microbiota modulates host immunity. We colonize germ-free mice with defined communities of cultured strains and profile antigen-specific responses directed toward individual strains ex vivo. We find that lamina propria T cells are specific to bacterial strains at the species level and can discriminate between strains of the same species. Ex vivo restimulations consistently identify the strains within complex communities that induce Th17 responses in vivo, providing the potential to shape baseline immune tone via community composition. Using an adoptive transfer model of colitis, we find that lamina propria T cells respond to different bacterial strains in conditions of inflammation versus homeostasis. Collectively, our approach represents a unique method for efficiently predicting the relative impact of individual bacterial strains within a complex community and for parsing microbiota-dependent phenotypes into component fractions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiota / Intestinos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Microbiota / Intestinos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article