Your browser doesn't support javascript.
loading
Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
Song, Shaoshuai; Li, Yuxuan; Huang, Jie; Cheng, Shengnan; Zhang, Zhijun.
Afiliación
  • Song S; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui R
  • Li Y; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui R
  • Huang J; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui R
  • Cheng S; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui R
  • Zhang Z; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui R
Biomater Adv ; 148: 213385, 2023 May.
Article en En | MEDLINE | ID: mdl-36934714
The emergence of three-dimensional (3D) bioprinting technology has attracted ever-increasing attention in engineered tissue fabrication for stem cell-based tissue repair. However, the in vivo performance of transplanted stem cells in the tissue engineering scaffolds is still a major concern for regenerative medicine researches. Especially for neural stem cell (NSC) transplantation, the uncontrollable differentiation of the NSCs in host often leads to a poor therapeutic effect in nerve tissue repair, such as spinal cord injury (SCI) repair. To address this issue, we have fabricated a conductive composite hydrogel (CCH) scaffold loading with NSCs by 3D bioprinting, for delivering the NSCs to injured spinal cord and repairing the propriospinal nerve circuit. In our strategy, a novel conductive polymer (PEDOT:CSMA,TA) was synthesized and introduced into a photocrosslinkable gelatin/polyethylene glycol physical-gel matrix, thereby forming a composite bioink with well shear-thinning and self-healing properties. The composite bioink we prepared was then printed into the NSC-laden CCH scaffold with high shape fidelity and similar physicochemical properties to native spinal cord tissues. The NSCs encapsulated in the bioprinted CCH scaffold extended their neurites to form superior physical contact with the neighboring cells as well as the electroconductive matrix, and maintained a predominant in vivo neuronal differentiation, accompanying with few astrocytic production in the lesion area after transplantation into the SCI sites. As a result, the removal of glial scar tissues and the regeneration of well-developed nerve fibres sequentially happened, which not only facilitated nerve tissue development, but also accelerated locomotor function recovery in the SCI rats. By exploring the application of conductive biomaterials in stem cell-based SCI therapy, this work represents a feasible, new approach to precisely construct tissue engineering scaffolds for stem cell-based therapy in traumatic SCI and other nervous system diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Células-Madre Neurales Límite: Animals Idioma: En Revista: Biomater Adv Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Traumatismos de la Médula Espinal / Células-Madre Neurales Límite: Animals Idioma: En Revista: Biomater Adv Año: 2023 Tipo del documento: Article