Your browser doesn't support javascript.
loading
Self-DNA Early Exposure in Cultivated and Weedy Setaria Triggers ROS Degradation Signaling Pathways and Root Growth Inhibition.
Ronchi, Alessia; Foscari, Alessandro; Zaina, Giusi; De Paoli, Emanuele; Incerti, Guido.
Afiliación
  • Ronchi A; Department of Life Sciences, University of Trieste, via Giorgieri 5, 34100 Trieste, Italy.
  • Foscari A; Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
  • Zaina G; Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
  • De Paoli E; Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
  • Incerti G; Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy.
Plants (Basel) ; 12(6)2023 Mar 13.
Article en En | MEDLINE | ID: mdl-36986976
The accumulation of fragmented extracellular DNA reduces conspecific seed germination and plantlet growth in a concentration-dependent manner. This self-DNA inhibition was repeatedly reported, but the underlying mechanisms are not fully clarified. We investigated the species-specificity of self-DNA inhibition in cultivated vs. weed congeneric species (respectively, Setaria italica and S. pumila) and carried out a targeted real-time qPCR analysis under the hypothesis that self-DNA elicits molecular pathways that are responsive to abiotic stressors. The results of a cross-factorial experiment on root elongation of seedlings exposed to self-DNA, congeneric DNA, and heterospecific DNA from Brassica napus and Salmon salar confirmed a significantly higher inhibition by self-DNA as compared to non-self-treatments, with the latter showing a magnitude of the effect consistent with the phylogenetic distance between the DNA source and the target species. Targeted gene expression analysis highlighted an early activation of genes involved in ROS degradation and management (FSD2, ALDH22A1, CSD3, MPK17), as well as deactivation of scaffolding molecules acting as negative regulators of stress signaling pathways (WD40-155). While being the first exploration of early response to self-DNA inhibition at molecular level on C4 model plants, our study highlights the need for further investigation of the relationships between DNA exposure and stress signaling pathways by discussing potential applications for species-specific weed control in agriculture.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Plants (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia