Your browser doesn't support javascript.
loading
Methacrylated human recombinant collagen peptide as a hydrogel for manipulating and monitoring stiffness-related cardiac cell behavior.
Mostert, Dylan; Jorba, Ignasi; Groenen, Bart G W; Passier, Robert; Goumans, Marie-José T H; van Boxtel, Huibert A; Kurniawan, Nicholas A; Bouten, Carlijn V C; Klouda, Leda.
Afiliación
  • Mostert D; Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
  • Jorba I; Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, the Netherlands.
  • Groenen BGW; Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
  • Passier R; Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, the Netherlands.
  • Goumans MTH; Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands.
  • van Boxtel HA; Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, the Netherlands.
  • Kurniawan NA; Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands.
  • Bouten CVC; Department of Cell and Chemical Biology and Center for Biomedical Genetics, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands.
  • Klouda L; Fujifilm Manufacturing Europe B.V., 5047 TK Tilburg, the Netherlands.
iScience ; 26(4): 106423, 2023 Apr 21.
Article en En | MEDLINE | ID: mdl-37035009
ABSTRACT
Environmental stiffness is a crucial determinant of cell function. There is a long-standing quest for reproducible and (human matrix) bio-mimicking biomaterials with controllable mechanical properties to unravel the relationship between stiffness and cell behavior. Here, we evaluate methacrylated human recombinant collagen peptide (RCPhC1-MA) hydrogels as a matrix to control 3D microenvironmental stiffness and monitor cardiac cell response. We show that RCPhC1-MA can form hydrogels with reproducible stiffness in the range of human developmental and adult myocardium. Cardiomyocytes (hPSC-CMs) and cardiac fibroblasts (cFBs) remain viable for up to 14 days inside RCPhC1-MA hydrogels while the effect of hydrogel stiffness on extracellular matrix production and hPSC-CM contractility can be monitored in real-time. Interestingly, whereas the beating behavior of the hPSC-CM monocultures is affected by environmental stiffness, this effect ceases when cFBs are present. Together, we demonstrate RCPhC1-MA to be a promising candidate to mimic and control the 3D biomechanical environment of cardiac cells.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IScience Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos