Your browser doesn't support javascript.
loading
Models for cluster randomized designs using ranked set sampling.
Ozturk, Omer; Kravchuk, Olena; Jarrett, Richard.
Afiliación
  • Ozturk O; Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, Ohio, 43210, USA.
  • Kravchuk O; School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia.
  • Jarrett R; School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia.
Stat Med ; 42(15): 2692-2710, 2023 07 10.
Article en En | MEDLINE | ID: mdl-37041108
Cluster randomized designs (CRD) provide a rigorous development for randomization principles for studies where treatments are allocated to cluster units rather than the individual subjects within clusters. It is known that CRDs are less efficient than completely randomized designs since the randomization of treatment allocation is applied to the cluster units. To mitigate this problem, we embed a ranked set sampling design from survey sampling studies into CRD for the selection of both cluster and subsampling units. We show that ranking groups in ranked set sampling act like a covariate, reduce the expected mean squared cluster error, and increase the precision of the sampling design. We provide an optimality result to determine the sample sizes at cluster and sub-sample level. We apply the proposed sampling design to a dental study on human tooth size, and to a longitudinal study from an education intervention program.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proyectos de Investigación Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos