Your browser doesn't support javascript.
loading
Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification.
Triana-Martinez, Jenniffer Carolina; Gil-González, Julian; Fernandez-Gallego, Jose A; Álvarez-Meza, Andrés Marino; Castellanos-Dominguez, Cesar German.
Afiliación
  • Triana-Martinez JC; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia.
  • Gil-González J; Department of Electronics and Computer Science, Pontificia Universidad Javeriana Cali, Cali 760031, Colombia.
  • Fernandez-Gallego JA; Programa de Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Ibagué, Ibagué 730001, Colombia.
  • Álvarez-Meza AM; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia.
  • Castellanos-Dominguez CG; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia.
Sensors (Basel) ; 23(7)2023 Mar 28.
Article en En | MEDLINE | ID: mdl-37050578
ABSTRACT
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they assume a homogeneous behavior of the labelers across the input feature space, and independence constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework using Chained Deep Learning (GCECDL) to code each annotator's non-stationary patterns regarding the input space while preserving the inter-dependencies among experts through a chained deep learning approach. Experimental results devoted to multiple-annotator classification tasks on several well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outperforming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating each labeler's reliability within the chained approach. Lastly, visual inspection and relevance analysis experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL weights reliable labelers as a function of each input sample and achieves suitable discrimination performance with preserved interpretability regarding each annotator's trustworthiness estimation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Colombia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Colombia