Your browser doesn't support javascript.
loading
Turbulence-resilient detection of the rotational Doppler effect with cylindrical vector beams.
Opt Express ; 31(10): 16442-16450, 2023 May 08.
Article en En | MEDLINE | ID: mdl-37157722
ABSTRACT
Recent years have witnessed a growing research interest in the rotational Doppler effect associated with orbital angular momentum of light, emerging as a powerful tool to detect rotating bodies in remote sensing. However, this method, when exposed to the turbulence in a realistic environment, has some severe limitations, leading to the unrecognizable rotational Doppler signals overwhelmed in background noise. Here we put forward a concise yet efficient method that enables the turbulence-resilient detection of the rotational Doppler effect with cylindrical vector beams. Specifically, by adopting the polarization-encoded dual-channel detection system, the low-frequency noises caused by turbulence can be individually extracted and subtracted, and thus mitigate the effect of turbulence. We demonstrate our scheme by conducting proof-of-principle experiments, whose results manifest the feasibility of a practical sensor to detect the rotating bodies in non-laboratory conditions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article