Your browser doesn't support javascript.
loading
Inferring the ecological and evolutionary determinants of community genetic diversity.
Overcast, Isaac; Noguerales, Víctor; Meramveliotakis, Emmanouil; Andújar, Carmelo; Arribas, Paula; Creedy, Thomas J; Emerson, Brent C; Vogler, Alfried P; Papadopoulou, Anna; Morlon, Hélène.
Afiliación
  • Overcast I; Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
  • Noguerales V; Department of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA.
  • Meramveliotakis E; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain.
  • Andújar C; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
  • Arribas P; Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
  • Creedy TJ; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain.
  • Emerson BC; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain.
  • Vogler AP; Department of Life Sciences, Natural History Museum, London, UK.
  • Papadopoulou A; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain.
  • Morlon H; Department of Life Sciences, Natural History Museum, London, UK.
Mol Ecol ; 32(23): 6093-6109, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37221561
Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: Francia