Your browser doesn't support javascript.
loading
Quantifying transcriptome diversity: a review.
Jones, Emma F; Haldar, Anisha; Oza, Vishal H; Lasseigne, Brittany N.
Afiliación
  • Jones EF; The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
  • Haldar A; The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
  • Oza VH; The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
  • Lasseigne BN; The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
Brief Funct Genomics ; 23(2): 83-94, 2024 Mar 20.
Article en En | MEDLINE | ID: mdl-37225889
Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Transcriptoma Idioma: En Revista: Brief Funct Genomics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Transcriptoma Idioma: En Revista: Brief Funct Genomics Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos