Your browser doesn't support javascript.
loading
A novel anti-apoptotic role for Cdc42/ACK-1 signaling in neurons.
Punessen, Noelle C; Pena, Claudia; Sandberg, Alexandra; Koza, Lilia A; Linseman, Daniel A.
Afiliación
  • Punessen NC; Department of Biological Sciences, University of Denver, Denver, CO, USA.
  • Pena C; Department of Biological Sciences, University of Denver, Denver, CO, USA.
  • Sandberg A; Department of Biological Sciences, University of Denver, Denver, CO, USA.
  • Koza LA; Department of Biological Sciences, University of Denver, Denver, CO, USA.
  • Linseman DA; Department of Biological Sciences, University of Denver, Denver, CO, USA; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA. Electronic address: daniel.linseman@du.edu.
Mol Cell Neurosci ; 126: 103865, 2023 09.
Article en En | MEDLINE | ID: mdl-37263460
Neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's and Parkinson's disease are caused by a progressive and aberrant destruction of neurons in the brain and spinal cord. These disorders lack effective long-term treatments that impact the underlying mechanisms of pathogenesis and as a result, existing options focus primarily on alleviating symptomology. Dysregulated programmed cell death (i.e., apoptosis) is a significant contributor to neurodegeneration, and is controlled by a number of different factors. Rho family GTPases are molecular switches with recognized importance in proper neuronal development and migration that have more recently emerged as central regulators of apoptosis and neuronal survival. Here, we investigated a role for the Rho GTPase family member, Cdc42, and its downstream effectors, in neuronal survival and apoptosis. We initially induced apoptosis in primary cultures of rat cerebellar granule neurons (CGNs) by removing both growth factor-containing serum and depolarizing potassium from the cell medium. We then utilized both chemical inhibitors and adenoviral shRNA targeted to Cdc42 to block the function of Cdc42 or its downstream effectors under either control or apoptotic conditions. Our in vitro studies demonstrate that functional inhibition of Cdc42 or its downstream effector, activated Cdc42-associated tyrosine kinase-1 (ACK-1), had no adverse effects on CGN survival under control conditions, but significantly sensitized neurons to cell death under apoptotic conditions. In conclusion, our results suggest a key pro-survival role for Cdc42/ACK-1 signaling in neurons, particularly in regulating neuronal susceptibility to pro-apoptotic stress such as that observed in neurodegenerative disorders.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Tirosina Quinasas / Proteínas de Unión al GTP rho Límite: Animals Idioma: En Revista: Mol Cell Neurosci Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Tirosina Quinasas / Proteínas de Unión al GTP rho Límite: Animals Idioma: En Revista: Mol Cell Neurosci Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos