Your browser doesn't support javascript.
loading
Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co.
Chen, Shumei; Du, Miao; Li, Shuai; Li, Zhinian; Hao, Lei.
Afiliación
  • Chen S; GRINM Group Co., Ltd., National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, Beijing 100088, China.
  • Du M; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China.
  • Li S; General Research Institute for Nonferrous Metals, Beijing 100088, China.
  • Li Z; GRINM Group Co., Ltd., National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, Beijing 100088, China.
  • Hao L; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China.
Molecules ; 28(11)2023 May 26.
Article en En | MEDLINE | ID: mdl-37298849
ABSTRACT
High-purity hydrogen is extensively employed in chemical vapor deposition, and the existence of methane impurity significantly impacts the device performance. Therefore, it is necessary to purify hydrogen to remove methane. The ZrMnFe getter commonly used in the industry reacts with methane at a temperature as high as 700 ∘C, and the removal depth is not sufficient. To overcome these limitations, Co partially substitutes Fe in the ZrMnFe alloy. The alloy was prepared by suspension induction melting method, and was characterized by means of XRD, ICP, SEM and XPS. The concentration of methane at the outlet was detected by gas chromatography to characterize the hydrogen purification performance of the alloy. The removal effect of the alloy on methane in hydrogen increases first and then decreases with the increase in substitution amount, and increases with the increase in temperature. Specifically, the ZrMnFe0.7Co0.3 alloy reduces methane levels in hydrogen from 10 ppm to 0.215 ppm at 500 ∘C. ZrMnFe0.7Co0.3 alloy can remove 50 ppm of methane in helium to less than 0.01 ppm at 450 ∘C, demonstrating its excellent methane reactivity. Moreover, Co substitution reduces the formation energy barrier of ZrC, and Co in the electron-rich state demonstrates superior catalytic activity for methane decomposition.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aleaciones / Metano Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aleaciones / Metano Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China