Your browser doesn't support javascript.
loading
Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD.
Wang, Chenyu; Derderian, Kimberly D; Hamada, Elizabeth; Zhou, Xujia; Nelson, Andrew D; Kyoung, Henry; Ahituv, Nadav; Bouvier, Guy; Bender, Kevin J.
Afiliación
  • Wang C; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
  • Derderian KD; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Hamada E; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Zhou X; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  • Nelson AD; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Kyoung H; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
  • Ahituv N; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
  • Bouvier G; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
  • Bender KJ; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
bioRxiv ; 2023 Jun 07.
Article en En | MEDLINE | ID: mdl-37333267
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos