Your browser doesn't support javascript.
loading
Bifunctional Localized High-Concentration Electrolyte for the Fast Kinetics of Lithium Batteries at Low Temperatures.
Lai, Pengbin; Deng, Xiaodie; Zhang, Yaqi; Li, Jialin; Hua, Haiming; Huang, Boyang; Zhang, Peng; Zhao, Jinbao.
Afiliación
  • Lai P; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Deng X; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Zhang Y; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Li J; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Hua H; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Huang B; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
  • Zhang P; College of Energy, Xiamen University, Xiamen 361102, P. R. China.
  • Zhao J; State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
ACS Appl Mater Interfaces ; 15(25): 31020-31031, 2023 Jun 28.
Article en En | MEDLINE | ID: mdl-37337885
ABSTRACT
Traditional lithium batteries cannot work well at low temperatures due to the sluggish desolvation process, which limits their applications in low-temperature fields. Among various previously reported approaches, solvation regulation of electrolytes is of great importance to overcome this obstacle. In this work, a tetrahydrofuran (THF)-based localized high-concentration electrolyte is reported, which possesses the advantages of a unique solvation structure and improved mobility, enabling a Li/lithium manganate (LMO) battery to cycle stably at room temperature (retains 85.9% after 300 cycles) and to work at a high rate (retains 69.0% at a 10C rate). Apart from that, this electrolyte demonstrates superior low-temperature performance, delivering over 70% capacity at -70 °C and maintaining 72.5 mAh g-1 (≈77.1%) capacity for 200 cycles at a 1C rate at -40 °C. Also, even when the rate increases to 5C, the battery could still operate well at -40 °C. This work demonstrates that solvation regulation has a significant impact on the kinetics of cells at low temperatures and provides a design method for future electrolyte design.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article