Your browser doesn't support javascript.
loading
DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol.
Li, Sen; Shi, Baodi; He, Defu; Zhou, Huanying; Gao, Zhixian.
Afiliación
  • Li S; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Naval Logistics Academy, Tianjin 300451, China.
  • Shi B; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, Chi
  • He D; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
  • Zhou H; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
  • Gao Z; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China. Electronic address: gaozhx@163.com.
J Hazard Mater ; 458: 131874, 2023 09 15.
Article en En | MEDLINE | ID: mdl-37379602
ABSTRACT
Diethylstilbestrol (DES) is a threatening factor to the human endocrine system. Here, we reported a DNA origami-assembled plasmonic dimer nanoantenna-based surface-enhanced Raman scattering (SERS) biosensor for measuring trace DES in foods. A critical factor influencing the SERS effect is interparticle gap modulation of SERS hotspots with nanometer-scale accuracy. DNA origami technology aims to generate naturally perfect structures with nano-scale precision. Exploiting the specificity of base-pairing and spatial addressability of DNA origami to form plasmonic dimer nanoantenna, the designed SERS biosensor generated electromagnetic-enhancement and uniform-enhancement hotspots to improve sensitivity and uniformity. Owing to their high target-binding affinity, aptamer-functionalized DNA origami biosensors transduced the target recognition into dynamic structural transformations of plasmonic nanoantennas, which were further converted to amplified Raman outputs. A broad linear range from 10-10 to 10-5 M was obtained with the detection limit of 0.217 nM. Our findings demonstrate the utility of aptamer-integrated DNA origami-based biosensors as a promising approach for trace analysis of environmental hazards.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal Límite: Humans Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Nanopartículas del Metal Límite: Humans Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China