Your browser doesn't support javascript.
loading
Locally strained hexagonal boron nitride nanosheets quantified by nanoscale infrared spectroscopy.
Torres-Davila, Fernand E; Barrett, Chance; Molinari, Michael; Sajid, Muhammad; Seitsonen, Ari P; Kara, Abdelkader; Tetard, Laurene.
Afiliación
  • Torres-Davila FE; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA. laurene.tetard@ucf.edu.
  • Barrett C; Physics Department, University of Central Florida, Orlando, FL, 32816, USA. abdelkader.kara@ucf.edu.
  • Molinari M; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA. laurene.tetard@ucf.edu.
  • Sajid M; Physics Department, University of Central Florida, Orlando, FL, 32816, USA. abdelkader.kara@ucf.edu.
  • Seitsonen AP; CNRS UMR 5248, Matrice Extracellulaire et Dynamique Institute of Chemistry and Biology of Membranes and Nanoobjects (CBMN), INP Bordeaux, Université de Bordeaux, 33607 Pessac, France.
  • Kara A; Physics Department, University of Central Florida, Orlando, FL, 32816, USA. abdelkader.kara@ucf.edu.
  • Tetard L; Département de Chimie, École Normale Supérieure, F-75252 Paris, France.
Nanoscale ; 15(28): 11972-11980, 2023 Jul 20.
Article en En | MEDLINE | ID: mdl-37395420
Defect engineering in two-dimensional materials expands the realm of their applications in catalysis, nanoelectronics, sensing, and beyond. As limited tools are available to explore nanoscale functional properties in non-vacuum environments, theoretical modeling provides some invaluable insight into the effect of local deformations to deepen the understanding of experimental signals acquired by nanoscale chemical imaging. We demonstrate the controlled creation of nanoscale strained defects in hexagonal boron nitride (h-BN) using atomic force microscopy and infrared (IR) light under an inert environment. Nanoscale IR spectroscopy reveals the broadening of the in-plane phonon (E1u) mode of h-BN during defect formation while density functional theory-based calculations and molecular dynamics provide quantification of the tensile and compressive strain in the deformation.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos