Your browser doesn't support javascript.
loading
EGR1 knockdown confers protection against ferroptosis and ameliorates intervertebral disc cartilage degeneration by inactivating the MAP3K14/NF-κB axis.
Zhang, Jianguo; He, Liming; Li, Qiang; Gao, Jian; Zhang, Erlei; Feng, Haoyu.
Afiliación
  • Zhang J; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
  • He L; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
  • Li Q; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
  • Gao J; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
  • Zhang E; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China.
  • Feng H; Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China. Electronic address: fenghaoyu07@163.com.
Genomics ; 115(5): 110683, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37453477
ABSTRACT
This study explored whether EGR1-MAP3K14-NF-κB axis regulated ferroptosis and IVD cartilage generation. EGR1 and MAP3K14 expression levels were determined in CEP tissues of IVDD patients and intermittent cyclic mechanical tension (ICMT)-treated CEP cells. After EGR1 and MAP3K14 were altered in ICMT-treated CEP cells, the expression levels of degeneration- and ferroptosis-related proteins were measured. Binding relationship between EGR1 and MAP3K14 was evaluated. Additionally, the impacts of EFR1 knockdown on ferroptosis and cartilage degeneration in vivo were analyzed. EGR1 and MAP3K14 were overexpressed in clinical samples and cell models of IVDD. In IVDD cell models, EGR1 knockdown reduced ferroptosis and cartilage degeneration, which was reversed by MAP3K14 overexpression or Erastin treatment. NF-κB pathway inhibition nullified these effects of sh-EGR1 + oe-MAP3K14 treatment. EGR1 knockdown inhibited ferroptosis and relieved CEP degeneration via MAP3K14-NF-κB axis inactivation in vivo. Collectively, our findings highlighted that EGR1 promoted ferroptosis and IVD cartilage degeneration through MAP3K14-NF-κB axis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Genomics Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Genomics Asunto de la revista: GENETICA Año: 2023 Tipo del documento: Article País de afiliación: China