Modeling Mechanical Activation of Macrophages During Pulmonary Fibrogenesis for Targeted Anti-Fibrosis Therapy.
bioRxiv
; 2023 Jul 21.
Article
en En
| MEDLINE
| ID: mdl-37503121
Pulmonary fibrosis, as seen in idiopathic pulmonary fibrosis (IPF) and COVID-induced pulmonary fibrosis, is an often-fatal lung disease. Increased numbers of immune cells such as macrophages were shown to accumulate in the fibrotic lung, but it is unclear how they contribute to the development of fibrosis. To recapitulate the macrophage mechanical activation in the fibrotic lung tissue microenvironment, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissue constructs become mechanically activated. The resulting co-alignment of macrophages, collagen fibers and fibroblasts promote widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMß2 (CD11b/CD18) and Rho-associated kinase 2, which is a previously unknown mechanism of action of the drug. Together, these results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by mechanically activated macrophages. We propose the coculture, force-sensing microtissue model as a powerful tool to study the complex immune-stromal cell interactions and the mechanism of action of anti-fibrosis drugs.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
BioRxiv
Año:
2023
Tipo del documento:
Article