Your browser doesn't support javascript.
loading
Enhancing robustness, precision, and speed of traction force microscopy with machine learning.
Kratz, Felix S; Möllerherm, Lars; Kierfeld, Jan.
Afiliación
  • Kratz FS; Department of Physics, TU Dortmund University, Dortmund, Germany.
  • Möllerherm L; Department of Physics, TU Dortmund University, Dortmund, Germany.
  • Kierfeld J; Department of Physics, TU Dortmund University, Dortmund, Germany. Electronic address: jan.kierfeld@tu-dortmund.de.
Biophys J ; 122(17): 3489-3505, 2023 09 05.
Article en En | MEDLINE | ID: mdl-37525464
Traction patterns of adherent cells provide important information on their interaction with the environment, cell migration, or tissue patterns and morphogenesis. Traction force microscopy is a method aimed at revealing these traction patterns for adherent cells on engineered substrates with known constitutive elastic properties from deformation information obtained from substrate images. Conventionally, the substrate deformation information is processed by numerical algorithms of varying complexity to give the corresponding traction field via solution of an ill-posed inverse elastic problem. We explore the capabilities of a deep convolutional neural network as a computationally more efficient and robust approach to solve this inversion problem. We develop a general purpose training process based on collections of circular force patches as synthetic training data, which can be subjected to different noise levels for additional robustness. The performance and the robustness of our approach against noise is systematically characterized for synthetic data, artificial cell models, and real cell images, which are subjected to different noise levels. A comparison with state-of-the-art Bayesian Fourier transform traction cytometry reveals the precision, robustness, and speed improvements achieved by our approach, leading to an acceleration of traction force microscopy methods in practical applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tracción / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Tracción / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2023 Tipo del documento: Article País de afiliación: Alemania